MATH6031 Lecture 3

Last time : We rewrote the extended Dufts ison. as $\mathbb{I}_{PBW} \circ \mathcal{J}^{\frac{1}{2}} : H(\mathcal{J}, S(\mathcal{J})) \xrightarrow{\sim} HH(\mathcal{U}(\mathcal{J}), \mathcal{U}(\mathcal{J}))$ § Complex manifolds - almost complex manifold : a smooth manifold M equipped with J: TM -> TM (here TM is the tangent bundle of the smooth manifold M) $(\tau, J^2 = -Id)$ $\longrightarrow \ T_{\mathbb{C}}M = T_{\mathbb{R}} \otimes \mathbb{C} = T' \oplus T' \quad (more controlly denoted)$ where T' (resp. T") is the eigenbundle corr. to the eigenvalse i (resp. -i). M is a complex manifold iff J is integrable $\stackrel{\texttt{A}}{\Longrightarrow} [\texttt{T}',\texttt{T}'] \subset \texttt{T}' (\stackrel{\texttt{or}}{\underset{\texttt{C}}\mathsf{T}'}, \stackrel{\texttt{T}'}{\underset{\texttt{C}}\mathsf{T}'})$ $\iff \overline{\partial}^2 = 0 \qquad (\circ \circ \circ \partial^2 = \circ)$ where $\overline{\partial}: \Omega'(M) \longrightarrow \Omega'''(M)$ $\exists : \Omega^{\bullet}(M) \longrightarrow \Omega^{\bullet}(M)$ are the usual Dolbeault operators on the bigraded Complex Si (M) given by $\Omega_M^{p,q}$ $\Omega^{P,\mathbf{i}}(M) = T(M, \Lambda(T)^{\mathbf{i}} \circ \Lambda^{\mathbf{i}}(T)^{\mathbf{i}})$ We have d = 2+3. If J2=0, then $(\Omega'(M), \overline{2}, \Lambda)$ is a differential graded algebra (DGA) colled the

Delbealt elgebra
$$\mathcal{A}$$
 M; its chamology $H'_{\mathfrak{s}}(M)$
is called the Delbeault cohomology \mathcal{A} M.
- Given a smooth complex vector bundle E, we similarly
have
 $\Omega^{p,1}(M, E) = T(M, N(T')^{t} \otimes \Lambda^{2}(T')^{t} \otimes E)$
E is a holomorphic vector bundle
 $(\Rightarrow \exists a \exists -connection$
 $\exists : T(M, E) \longrightarrow \Omega^{p,1}(M, E)$
St. $\exists (fs) = (\exists f) \otimes s + f \cdot \exists s \quad fur f \in C^{p}(M)$
on $T(M, E) \quad T(M) \quad on T(M, E)$ and $s \in T(M, E)$
and $\exists^{2} = 0$.
In this case, we have
 $(\Omega^{p,1}(M, E), \exists)$
which is differential graded (DG) module over
the DGA $(\Omega^{p,1}(M), \exists, \Lambda)$.
We also have the Dolleautt cohomology $H_{\mathfrak{s}}(M, E)$.
S Determetian theoretical meaning \mathcal{A} $H_{\mathfrak{s}}(M, E)$.
S Determetian theoretical meaning \mathcal{A} $H_{\mathfrak{s}}(M, E)$.
S For a smooth complex vector bundle E,
two $\exists -$ connections $\exists i, \exists s \ differ by a (0, i) - form$
with values in End E, i.e.
 $\exists 2^{-3}, = S \in \Omega^{p}(M, End E)$
 $\Rightarrow \int space dt 1 is - -dE + scare = \Omega^{p}(M \in Is)$

$$= \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{$$

of the holom. str. on E · obstructions for extending $\overline{\partial}_{\overline{z}} = \overline{\partial} + \varepsilon \cdot \overline{\varsigma}$ to an all-order deformation of the holom. str. on E lie in H3(M, End E): in general, 3+3 defines a (new) holom. str. on $E \iff (3+3)^2 = 0$ 22+ 3.5+5.3+52 $\overline{\partial}$ + $\overline{2}$ $\overline{5}$ + $\overline{2}$ $\overline{5}$ JELLE 3 1[3,3] J-clared The last equation is called the Mourer-Cortan equation associated to the deformations of holom. str. on E. § Atiyah and Todd classes Consider a holom, vector bundle E-> M. Choose a connection $\nabla : T(M, E) \longrightarrow \Omega'(M, E)$ Compatible with the holomorphic structure on E t this means that the (0,1)-part of V i.e. ∇'' (when we write $\nabla = \nabla' + \overline{\nabla}''$) (1,0) (0,1) is the J-conn. on E. Then the unveture of T is of the form $R := \nabla^{2} = \left(\nabla' + \nabla''\right)^{2} \stackrel{\cdots}{=} R^{2^{o}} + R''$ Note that $\nabla'= \overline{\partial} \Leftrightarrow$ we can write $\nabla = d + I$ (1.celly) where $T \in \Omega'(End E)$

Therefore,
$$R'' = \Im T$$
 (locally)
 $\Rightarrow \Im R'' = 0$
 $\Rightarrow [R''] \in H_3'(T')^* \circ End E$)
 $|Def$ The Atigah class of E to defined as
 $at_E := [R''] \in H_3'(T')^* \circ End E$)
 $H_3'(Hon(T', End E))$
As in Chern-Weil theory, we can show that at E is
independent of the choice of the connectin ∇ .
For any $n \in \mathbb{Z}_{>0}$, define the n-th scalar Atigah
class $a_n(E)$ as
 $a_n(E) := tr(at_E^n) \in H_3^n(M, \Lambda'(T')^n)$
 $Refer The Todd class of E is defined as
 $td_E := det\left(\frac{at_E}{1-e^{-at_E}}\right)$
 $expressed as a formal series in $a_n(E)$.
 $Rmk : If M$ is Killer, then $\frac{2}{2\pi t} a_n(E) = c_n(E)$.
S Hochschild cohomology of a smooth mtd
 M : smooth mtd.
 $T_{pdy}^{-M} := T(M, \Lambda^{T}M)$
 $equipped with product A and differential d=0$
So $(TpdyM, 0, A)$ is a DGA with trivial differential
 D eveloped in the product A and differential d=0$$

 $D_{poly}M \subset (C(C^{(M)}, C^{(M)}), d_{H}, U)$ Hochschild complex Consisting of Hochschild Lochains which are differential operators in each argument. 1962 e.g. $X = C^{*} = Spec C[x_{1,...,x_{n}}]$ The degree 0 graded map $T_{pl} \times = HH(A)$ $I_{HKR}: (T_{pol_{2}}M, \circ) \longrightarrow (D_{pol_{2}}M, d_{H})$ $\forall_1 \land \dots \land \forall_n \longmapsto (f_1 \circ \dots \circ f_n)$ $\longmapsto \frac{\nu_{i}}{\tau} \sum_{\alpha \in \mathcal{Q}}^{\alpha \in \mathcal{Q}} (-\iota)_{\alpha_{1}}^{\alpha} (\ell_{1}) \cdots (\ell_{n})$ is a quasi-ison of complexes which induces an ison at graded algebras in chanology. Pf: - check that IHER is a morphism of complexes. - check that A, U, dH, Inka are all CO(M) - linear - Observation : Djødg M = Hochschild complex of the algebra JM : 00-jets of As en algebra, we have $\mathcal{J}_{M}^{\infty} \cong \mathcal{I}(M, \hat{S}(T^{*}M)) \quad \mathcal{J}_{M}^{\infty} = \mathcal{H}_{\mathcal{O}}(D_{p+1}^{\prime}M, C^{\prime}(M))$ with product (j', j2)(P) = (j, g)(A(P)) Then the statement where $\Delta(p) \in D_{poly}^2 M$ is defined by follows from a $\Delta(P)(f,j) = P(fg).$ previous result (Lenna 2.6). # If V is a finite-dim vect. space, then $\Lambda^{\bullet}V^{*} \hookrightarrow C^{\bullet}(\widehat{S}(V), k)$ is a quasi-ison which

induces an isom of graded algebras $\Lambda' \vee * \cong HH'(\widehat{S}(\vee), k)$ § Hochschild cohomology of a complex mfd M : cpx mfd E: any vector belle $T_{poly}^{\prime}(M,E) := T(M, E \otimes \Lambda T^{\prime})$ Define 2-differential operators as elts of End (C°(M)) generated by functions and type (1,0) vector fields. If we have a bundle E, we similarly define E-valued 2-differential operators as linear maps $C^{\infty}(M) \rightarrow T(M, E)$ which are compositions of 2-diff. operators with either sections of E or TOE as E-valued D'ody (M, E) (C'(C'(M), I(M,E)), dh) rector tields Consisting A cochains that are 2-differential operators in each argument. Thm (HKR) The degree O graded map THER: (T' (M,E), 0) -> (D' (M,E), dH) $(v, \dots, v,) \otimes s \mapsto (f, \otimes \dots \otimes f, \mapsto)$ $\frac{1}{n!} \sum_{\sigma \in \mathcal{G}_n} (-1)^{\sigma} V_{\sigma(i)}(f_1) \cdots V_{\sigma(n)}(f_n) s$ is a quarrestisson. It completes.

Finally, let us consider the special case $E = \Lambda(T^{*})^{*}$ Then $T'_{p'y}(M, \Lambda(T'')^*) = \Omega'(M, \Lambda'T')$ is a DGA with product A and differential J which satisfy $\overline{J}(v \cap w) = \overline{J}(v) \wedge w + (v)^{|v|} \vee n \overline{J}(w)$ On the other hand, J acts on J-diff. sperator P by $(\underline{2}(b))(\underline{t}) = \underline{2}(b(\underline{t})) - b(\underline{2}\underline{t})$ This extends uniquely to a degree 1 derivetin on D', (M, N(T")"), making it a DGA with product (PuQ)(f,...,fn+n) = (-1)^{n(Q)}P(f,...,fn)Q(fm,...,fnm) where 1.1 refers to the exterior degree, $I_{HKR} : (\mathfrak{D}'(M, \Lambda'T'), \mathfrak{Z}) \xrightarrow{-} (\mathfrak{D}'_{ply}(M, \Lambda'T')^*), d_{H} + \mathfrak{Z})$ Ts a guasi - Tsom. is an ison of Graded) vector spaces. BUT the product is not preserved. Thm (Kontsevich) The map Inkr • tdz, induces on ison. of graded algebras $H_{\mathbf{J}}(\mathbf{N}^{\mathsf{T}}) \xrightarrow{\simeq} H(\mathbf{D}_{\mu_{\mathbf{J}}}(\mathbf{M}, \mathbf{N}^{\mathsf{H}}), \mathbf{d}_{\mathbf{H}}^{\mathsf{H}} \in \mathcal{J})$ on cohomology. deg o: Troig(M) => H(Drig(M), dH)